先前说了树的基本操作,我们采用的是二叉链表来保存树形结构,当然二叉有二叉的困扰之处,比如我想找到当前结点的“前驱”和“后继”,那么我们就必须要遍历一下树,然后才能定位到该“节点”的“前驱”和“后继”,每次定位都是O(n),这不是我们想看到的,那么有什么办法来解决呢?
(1) 在节点域中增加二个指针域,分别保存“前驱”和“后继”,那么就是四叉链表了,哈哈,还是有点浪费空间埃
(2) 看下面的这个二叉树,我们知道每个结点有2个指针域,4个节点就有8个指针域,其实真正保存节点的指针
仅有3个,还有5个是空闲的,那么为什么我们不用那些空闲的指针域呢,达到资源的合理充分的利用。
一: 线索二叉树
1 概念
刚才所说的在空闲的指针域里面存放“前驱”和“后继”就是所谓的线索。
<1> 左线索: 在空闲的左指针域中存放该“结点”的“前驱”被认为是左线索。
<2> 右线索: 在空闲的右指针域中存放该“结点“的”后继“被认为是右线索。
当“二叉链表”被套上这种线索,就被认为是线索链表,当“二叉树”被套上这种线索就被认为是线索二叉树,当然线索根据
二叉树的遍历形式不同被分为“先序线索”,“中序线索”,“后序线索”。
2 结构图
说了这么多,我们还是上图说话,就拿下面的二叉树,我们构建一个中序线索二叉树,需要多动动脑子哟。
<1> 首先要找到“中序遍历”中的首结点D,因为“D结点”是首节点,所以不存在“前驱”,左指针自然是空,
”D节点”的右指针存放的是“后继”,那么根据“中序遍历”的规则应该是B,所以D的右指针存放着B节点。
<2> 接着就是“B节点”,他的左指针不为空,所以就不管了,但是他的“右指针”空闲,根据规则“B结点“的右
指针存放的是"A结点“。
<3> 然后就是“A节点”,他已经被塞的满满的,所以就没有“线索”可言了。
<4> 最后就是“C节点”,根据规则,他的“左指针”存放着就是“A节点“,”C节点“是最后一个节点,右指针自然就是空的,你懂的。
3 基本操作
常用的操作一般有“创建线索二叉树”,”查找后继节点“,”查找前驱节点“,”遍历线索二叉树“,下面的操作我们就以”中序遍历“来创建中序线索二叉树。
<1> 线索二叉树结构
从“结构图”中可以看到,现在结点的指针域中要么是”子节点(SubTree)“或者是”线索(Thread)“,此时就要设立标志位来表示指针域存放的是哪一种。
复制代码 代码如下:
#region 节点标识(用于判断孩子是节点还是线索)
///
/// 节点标识(用于判断孩子是节点还是线索)
///
public enum NodeFlag
{
SubTree = 1,
Thread = 2
}
#endregion
#region 线索二叉树的结构
///
/// 线索二叉树的结构
///
///
public class ThreadTree
{
public T data;
public ThreadTree
public ThreadTree
public NodeFlag leftFlag;
public NodeFlag rightFlag;
}
#endregion
<2> 创建线索二叉树
刚才也说了如何构建中序线索二叉树,在代码实现中,我们需要定义一个节点来保存当前节点的前驱,我练习的时候迫不得已,只能使用两个
ref来实现地址操作,达到一个Tree能够让两个变量来操作。
复制代码 代码如下:
#region 中序遍历构建线索二叉树
///
/// 中序遍历构建线索二叉树
///
///
///
public void BinTreeThreadingCreate_LDR
{
if (tree == null)
return;
//先左子树遍历,寻找起始点
BinTreeThreadingCreate_LDR(ref tree.left, ref prevNode);
//如果left为空,则说明该节点可以放“线索”
tree.leftFlag = (tree.left == null) ? NodeFlag.Thread : NodeFlag.SubTree;
//如果right为空,则说明该节点可以放“线索”
tree.rightFlag = (tree.right == null) ? NodeFlag.Thread : NodeFlag.SubTree;
if (prevNode != null)
{
if (tree.leftFlag == NodeFlag.Thread)
tree.left = prevNode;
if (prevNode.rightFlag == NodeFlag.Thread)
prevNode.right = tree;
}
//保存前驱节点
prevNode = tree;
BinTreeThreadingCreate_LDR(ref tree.right, ref prevNode);
}
#endregion
<3> 查找后继结点
现在大家都知道,后继结点都是保存在“结点“的右指针域中,那么就存在”两种情况“。
《1》 拿“B节点“来说,他没有右孩子,则肯定存放着线索(Thread),所以我们直接O(1)的返回他的线索即可。
《2》 拿“A节点”来说,他有右孩子,即右指针域存放的是SubTree,悲哀啊,如何才能得到“A节点“的后继呢?其实也很简单,
根据”中序“的定义,”A节点“的后继必定是”A节点“的右子树往左链找的第一个没有左孩子的节点(只可意会,不可言传,嘻嘻)。
复制代码 代码如下:
#region 查找指定节点的后继
///
/// 查找指定节点的后继
///
///
///
public ThreadTree
{
if (tree == null)
return null;
//如果查找节点的标志域中是Thread,则直接获取
if (tree.rightFlag == NodeFlag.Thread)
return tree.right;
else
{
//根据中序遍历的规则是寻找右子树中中序遍历的第一个节点
var rightNode = tree.right;
//如果该节点是subTree就需要循环遍历
while (rightNode.leftFlag == NodeFlag.SubTree)
{
rightNode = rightNode.left;
}
return rightNode;
}
}
#endregion
<4> 查找前驱节点
这个跟(3)的操作很类似,同样也具有两个情况。
《1》 拿“C结点”来说,他没有“左子树”,则说明“C节点”的左指针为Thread,此时,我们只要返回左指针域即可得到前驱结点。
《2》 拿"A节点“来说,他有”左子树“,则说明”A节点“的左指针为SubTree,那么怎么找的到”A节点“的前驱呢?同样啊,根据
”中序遍历“的性质,我们可以得知在”A节点“的左子树中往”右链“中找到第一个没有”右孩子“的节点。
复制代码 代码如下:
#region 查找指定节点的前驱
///
/// 查找指定节点的前驱
///
///
///
///
public ThreadTree
{
if (tree == null)
return null;
//如果标志域中存放的是线索,那么可以直接找出来
if (tree.leftFlag == NodeFlag.Thread)
return tree.left;
else
{
//根据”中序“的规则可知,如果不为Thread,则要找出左子树的最后节点
//也就是左子树中最后输出的元素
var leftNode = tree.left;
while (leftNode.rightFlag == NodeFlag.SubTree)
leftNode = leftNode.right;
return leftNode;
}
}
#endregion
<5> 遍历线索二叉树
因为我们构建线索的时候采用的是“中序”,那么我们遍历同样采用“中序”,大家是否看到了“线索”的好处,此时我们找某个节点的时间复杂度变为了
O(1) ~0(n)的时间段,比不是线索的时候查找“前驱"和“后继”效率要高很多。
复制代码 代码如下:
#region 遍历线索二叉树
///
/// 遍历线索二叉树
///
///
///
public void BinTreeThread_LDR
{
if (tree == null)
return;
while (tree.leftFlag == NodeFlag.SubTree)
tree = tree.left;
do
{
Console.Write(tree.data + "t");
tree = BinTreeThreadNext_LDR(tree);
} while (tree != null);
}
#endregion
最后上一下总的运行代码
复制代码 代码如下:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
namespace ThreadChainTree
{
class Program
{
static void Main(string[] args)
{
ThreadTreeManager manager = new ThreadTreeManager();
//生成根节点
ThreadTree
//生成节点
AddNode(tree);
ThreadTree
//构建线索二叉树
manager.BinTreeThreadingCreate_LDR(ref tree, ref prevNode);
Console.WriteLine("n线索二叉树的遍历结果为:n");
//中序遍历线索二叉树
manager.BinTreeThread_LDR(tree);
}
#region 生成根节点
///
/// 生成根节点
///
///
static ThreadTree
{
ThreadTree
Console.WriteLine("请输入根节点,方便我们生成树n");
tree.data = Console.ReadLine();
Console.WriteLine("根节点生成已经生成n");
return tree;
}
#endregion
#region 插入节点操作
///
/// 插入节点操作
///
///
static ThreadTree
{
ThreadTreeManager mananger = new ThreadTreeManager();
while (true)
{
ThreadTree
Console.WriteLine("请输入要插入节点的数据:n");
node.data = Console.ReadLine();
Console.WriteLine("请输入要查找的父节点数据:n");
var parentData = Console.ReadLine();
if (tree == null)
{
Console.WriteLine("未找到您输入的父节点,请重新输入。");
continue;
}
Console.WriteLine("请确定要插入到父节点的:1 左侧,2 右侧");
Direction direction = (Direction)Enum.Parse(typeof(Direction), Console.ReadLine());
tree = mananger.BinTreeThreadAddNode(tree, node, parentData, direction);
Console.WriteLine("插入成功,是否继续? 1 继续, 2 退出");
if (int.Parse(Console.ReadLine()) == 1)
continue;
else
break;
}
return tree;
}
#endregion
}
#region 节点标识(用于判断孩子是节点还是线索)
///
/// 节点标识(用于判断孩子是节点还是线索)
///
public enum NodeFlag
{
SubTree = 1,
Thread = 2
}
#endregion
#region 线索二叉树的结构
///
/// 线索二叉树的结构
///
///
public class ThreadTree
{
public T data;
public ThreadTree
public ThreadTree
public NodeFlag leftFlag;
public NodeFlag rightFlag;
}
#endregion
#region 插入左节点或者右节点
///
/// 插入左节点或者右节点
///
public enum Direction { Left = 1, Right = 2 }
#endregion
#region 线索二叉树的基本操作
///
/// 线索二叉树的基本操作
///
public class ThreadTreeManager
{
#region 将指定节点插入到二叉树中
///
/// 将指定节点插入到二叉树中
///
///
///
///
/// 插入做左是右
///
public ThreadTree
{
if (tree == null)
return null;
if (tree.data.Equals(data))
{
switch (direction)
{
case Direction.Left:
if (tree.left != null)
throw new Exception("树的左节点不为空,不能插入");
else
tree.left = node;
break;
case Direction.Right:
if (tree.right != null)
throw new Exception("树的右节点不为空,不能插入");
else
tree.right = node;
break;
}
}
BinTreeThreadAddNode(tree.left, node, data, direction);
BinTreeThreadAddNode(tree.right, node, data, direction);
return tree;
}
#endregion
#region 中序遍历构建线索二叉树
///
/// 中序遍历构建线索二叉树
///
///
///
public void BinTreeThreadingCreate_LDR
{
if (tree == null)
return;
//先左子树遍历,寻找起始点
BinTreeThreadingCreate_LDR(ref tree.left, ref prevNode);
//如果left为空,则说明该节点可以放“线索”
tree.leftFlag = (tree.left == null) ? NodeFlag.Thread : NodeFlag.SubTree;
//如果right为空,则说明该节点可以放“线索”
tree.rightFlag = (tree.right == null) ? NodeFlag.Thread : NodeFlag.SubTree;
if (prevNode != null)
{
if (tree.leftFlag == NodeFlag.Thread)
tree.left = prevNode;
if (prevNode.rightFlag == NodeFlag.Thread)
prevNode.right = tree;
}
//保存前驱节点
prevNode = tree;
BinTreeThreadingCreate_LDR(ref tree.right, ref prevNode);
}
#endregion
#region 查找指定节点的后继
///
/// 查找指定节点的后继
///
///
///
public ThreadTree
{
if (tree == null)
return null;
//如果查找节点的标志域中是Thread,则直接获取
if (tree.rightFlag == NodeFlag.Thread)
return tree.right;
else
{
//根据中序遍历的规则是寻找右子树中中序遍历的第一个节点
var rightNode = tree.right;
//如果该节点是subTree就需要循环遍历
while (rightNode.leftFlag == NodeFlag.SubTree)
{
rightNode = rightNode.left;
}
return rightNode;
}
}
#endregion
#region 查找指定节点的前驱
///
/// 查找指定节点的前驱
///
///
///
///
public ThreadTree
{
if (tree == null)
return null;
//如果标志域中存放的是线索,那么可以直接找出来
if (tree.leftFlag == NodeFlag.Thread)
return tree.left;
else
{
//根据”中序“的规则可知,如果不为Thread,则要找出左子树的最后节点
//也就是左子树中最后输出的元素
var leftNode = tree.left;
while (leftNode.rightFlag == NodeFlag.SubTree)
leftNode = leftNode.right;
return leftNode;
}
}
#endregion
#region 遍历线索二叉树
///
/// 遍历线索二叉树
///
///
///
public void BinTreeThread_LDR
{
if (tree == null)
return;
while (tree.leftFlag == NodeFlag.SubTree)
tree = tree.left;
do
{
Console.Write(tree.data + "t");
tree = BinTreeThreadNext_LDR(tree);
} while (tree != null);
}
#endregion
}
#endregion
}
将文章开头处的数据输入到存储结构中